

## ISOTHERMAL INTERPHASE DIFFUSION WITH CONSECUTIVE REACTIONS

Sei Ki Moon and \*Won, You Sung

Department of Chemical Engineering,

Hanyang University, Sungdong-Ku, Seoul, 133 Korea

(Received 21 June 1984 • accepted 10 October 1984)

**Abstract** — For multi-step heterogeneous consecutive reactions affected entirely by interphase diffusion under isothermal condition, the equations for the effectiveness factors, the surface concentrations and the point yields were derived in terms of the Damkoehler numbers or the measurables from the mass balances set up on the assumption that the mass-transfer rate balances the surface-reaction rate at steady state.

From the analyses of the equations derived, the effectiveness factors for the intermediate steps and the surface concentrations of intermediates were understood to be enhanced by the measurables inclusive of the concentrations and the mass-transfer coefficients. Then the effect of the concentrations was concluded to be most significant. The effects of these measurables to the effectiveness factors and the surface concentrations were qualitatively discussed for simple consecutive reactions and also for additive consecutive reactions. Especially, as for two-step additive consecutive reactions, the effects of measurables  $\eta$  Da and the concentrations to the effectiveness factors were examined with graphical presentations.

Finally, the brief discussion of the dependency of the Damkoehler number upon reaction time and the effect of the Renolds number and diffusivity to the extent of the mass-transfer resistance were presented.

### INTRODUCTION

In the treatment of the kinetic data of the reactions on heterogeneous catalyst, mass transfer sometimes complicates the analyses of the kinetics even if simple power principle is applied to the rate equations.

Many works treated diffusional effect to the reaction rates on heterogeneous catalyst, and thus some of them were introduced [1-7]. Also some examples of the reactions affected by mass transfer appears in the literatures: the oxidation of ammonia [8, 9], the oxidation of naphthalene [10] and the disproportionation of olefin [11].

In common single reaction affected by only external mass transfer, since the surface concentration of a reactant is always thinner than that in the bulk under isothermal condition due to diffusional resistance, the measured reaction rate is less than expected in the bulk condition. Also, since the reaction rate is usually measured by the bulk concentration, it is required to obtain the rate by the surface reaction. Then the Damkoehler number Da becomes a measure of the extent of the diffusional resistance. But, on account of its unmeasurability directly from experiment, the effec-

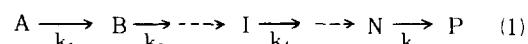
tiveness factor  $\eta$  defined by the ratio of the surface-reaction rate to the bulk-reaction rate is usually measured from the measurables, so-called  $\eta$  Da. Then the following division of  $\eta$  Da by  $\eta$  indirectly produces the calculated value of the Da.

What is of interest in this study is to relate the desired variables with the measurables from the experiment on the ground that the mass-transfer rate within film around the catalyst particle balances the surface reaction rate. Of course, the Stefan-Maxwell equations may be applicable to multi-component system, but the introduction of the mass-transfer coefficients were attempted because of the convenience to obtain the desired equations.

### SIMPLE CONSECUTIVE REACTIONS

#### Surface Concentrations and Effectiveness Factors

Multi-step consecutive reactions schemized as the following were considered.



where each step is regarded to be elementary.

At steady state, a mass balance for the reactant A is set up as

\* To whom correspondence should be addressed.

$$(k_g a)_A (C_A - C_{AS}) = k_1 C_{AS} = R_1 \quad (2)$$

For the intermediate I,

$$(k_g a)_I (C_{IS} - C_I) = k_{I-1} C_{(I-1)S} - k_I C_{IS} = R_{I-1} - R_I \quad (3)$$

(I = B, C, ..., N, and j = 2, 3, ..., n)

where the subscript I means the intermediate corresponding to the j-th step, and 1-1 indicates the intermediate corresponding to the (j-1)-th step.

And for the product P,

$$(k_g a)_P (C_{PS} - C_P) = k_n C_{NS} = R_n \quad (4)$$

If  $Z_I$  is defined as the ratio of the surface concentration of a species I to the bulk concentration,  $C_{IS}/C_P$ , and the effectiveness factor  $\eta_I$  as the ratio of the surface-reaction rate to the bulk-reaction one,  $\eta_I$  for isothermal reaction becomes

$$\eta_I = Z_I \quad (5)$$

Thus, from the relations (2)-(4),  $\eta_I$ s and  $Z_I$ s are written as the followings in terms of the Damkoehler number  $Da_I$  defined by the ratio of the reaction rate to the mass-transfer rate,  $k_I/(k_g a)_I$ .

That is,

$$\eta_1 = Z_A = \frac{1}{1 + Da_1} \quad (6)$$

$$\eta_J = Z_I = \frac{1 + \nu_1 \gamma_1 Z_{I-1} Da_{J-1}}{1 + Da_J} \quad (7)$$

where  $\nu_1$  and  $\gamma_1$  are defined by

$$\nu_1 = \frac{(k_g a)_{I-1}}{(k_g a)_I} \text{ and } \gamma_1 = \frac{C_{I-1}}{C_I} \quad (I = B, C, \dots, N)$$

$$\text{and } Z_P = 1 + \nu_P \gamma_P Z_N Da_n \quad (8)$$

In case of two-step consecutive reactions, the eq. (7) virtually becomes same as the Carberry's result [1] while the eq. (6) is essentially for the first-order reaction.

Now it is required to obtain the equations for  $\eta_I$  and  $Z_I$  in terms of the measurables  $\eta_I Da_I$  because  $Da_I$  is not determined directly from experiment, but  $\eta_I Da_I$  determined directly since  $\eta_I Da_I = R_I / (k_g a)_I C_I$ . The reusing of the relations (2)-(4) and the introduction of  $\eta_I Da_I$  let us reach the following results.

$$\eta_1 = Z_A = 1 - \eta_1 Da_1 \quad (9)$$

$$\eta_J = Z_I = 1 + \nu_1 \gamma_1 \eta_{I-1} Da_{J-1} - \eta_I Da_I \quad (10)$$

and

$$Z_P = 1 + \nu_P \gamma_P \eta_n Da_n \quad (11)$$

### Point Yields

If  $Y_{IS}$ , the point yield by the surface reaction, are defined as

$$Y_{IS} = \frac{dC_{IS}}{dC_{AS}} \quad (12)$$

$Y_{IS}$  is written as the followings. That is,

$$Y_{IS} = K_{J-1} \frac{Z_{I-1}}{Z_A} \frac{C_{I-1}}{C_A} - K_J \frac{Z_I}{Z_A} \frac{C_I}{C_A} \quad (13)$$

In terms of  $Da_I$ ,

$$Y_{IS} = K_{J-1} \frac{1 + Da_1}{1 + Da_J} (1 + \nu_{I-1} \gamma_{I-1} Z_{I-2} Da_{J-1}) \prod_{I=B}^{I-1} (1/\gamma_I) \quad (14)$$

$$- K_J \frac{1 + Da_1}{1 + Da_J} (1 + \nu_I \gamma_I Z_{I-1} Da_{J-1}) \prod_{I=B}^I (1/\gamma_I) \quad (14)$$

In terms of  $\eta_I Da_I$ ,

$$Y_{IS} = K_{J-1} \frac{1 + \nu_{I-1} \gamma_{I-1} \eta_{I-2} Da_{J-1}}{1 - \eta_I Da_1} \prod_{I=B}^{I-1} (1/\gamma_I) \quad (15)$$

$$- K_J \frac{1 + \nu_I \gamma_I \eta_{I-1} Da_{J-1}}{1 - \eta_I Da_1} \prod_{I=B}^I (1/\gamma_I) \quad (15)$$

where

$$K_J = k_J / k_1$$

Then  $\eta_I Da_I = 0$  in case that the number of the step does not match the corresponding species. For example,  $\eta_2 Da_3 = 0$  since  $\eta_2 Da_3$  has no physical meaning.

If  $Y_1$ , the point yields by the bulk reactions, are defined as

$$Y_1 = \frac{dC_1}{-dC_A}$$

$Y_1$  is written as

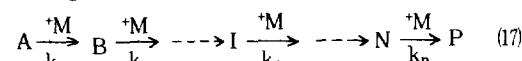
$$Y_1 = K_{J-1} \prod_{I=B}^{I-1} (1/\gamma_I) - K_J \prod_{I=B}^I (1/\gamma_I) \quad (16)$$

Thus the comparison can be made between  $Y_{IS}$  and  $Y_1$ .

### ADDITIVE CONSECUTIVE REACTIONS

#### Surface Concentrations and Effectiveness Factors

Multi-step consecutive reactions schemized as the following were considered as well



Where each step is also elementary.

The mass balances are set up for each species as the followings. That is,

$$(k_g a)_M (C_M - C_{MS}) = \sum_{J=1}^n k_J C_{MS} C_{IS} = \sum_{J=1}^n R_J \quad (18)$$

$$(k_g a)_A (C_A - C_{AS}) = k_1 C_{MS} C_{AS} \quad (19)$$

$$(k_g a)_I (C_{IS} - C_I) = k_{I-1} C_{MS} C_{(I-1)S} - k_I C_{MS} C_{IS} \\ = R_{I-1} - R_I \quad (20)$$

and

$$(k_g a)_P (C_{PS} - C_P) = k_n C_{MS} C_{NS} = R_n \quad (21)$$

If new definitions for  $\nu_P$ ,  $\gamma_P$  and  $Da_I$  are given as

$$\nu_1 = \frac{(k_{g,a})_M}{(k_{g,a})_1}, \gamma_1 = \frac{C_M}{C_1} \text{ and } Da_1 = \frac{k_1 C_1}{(k_{g,a})_M}$$

from the above mass balances,  $Z_M$ , which is  $C_{MS}/C_M$ , and  $Z_i$ s are written as the followings. That is,

$$Z_M = 1 - \sum_{j=1}^n Z_M Z_j Da_j, \quad (22)$$

where the usage of the subscripts are same as before.

$$Z_A = 1 - \nu_A \gamma_A Z_M Z_A Da_1 \quad (23)$$

$$Z_1 = 1 + \nu_1 \gamma_1 (Z_M Z_{1-1} Da_{1-1} - Z_M Z_1 Da_1) \quad (24)$$

and

$$Z_P = 1 + \nu_P \gamma_P Z_M Z_N Da_n \quad (25)$$

Meanwhile,

$$\eta_j = Z_M Z_j, \text{ and } \eta_j Da_j = \frac{R_j}{(k_{g,a})_M C_M} \quad (26)$$

Thus  $Z_i$ s are written in terms of  $\eta_j Da_j$  as the followings. That is,

$$Z_M = 1 - \sum_{j=1}^n \eta_j Da_j, \quad (26)$$

$$Z_A = 1 - \nu_A \gamma_A \eta_1 Da_1, \quad (27)$$

$$Z_1 = 1 + \nu_1 \gamma_1 (\eta_{1-1} Da_{1-1} - \eta_1 Da_1) \quad (28)$$

and

$$Z_P = 1 + \nu_P \gamma_P \eta_n Da_n \quad (29)$$

According to the definition,  $\eta_j$ s are written in terms of  $Da_j$  as the followings. That is,

$$\eta_1 = (1 - \sum_{j=1}^n Z_M Z_j Da_j) (1 - \nu_A \gamma_A Z_M Z_A Da_1) \quad (30)$$

and

$$\eta_j = (1 - \sum_{j=1}^n Z_M Z_j Da_j) [1 + \nu_1 \gamma_1 (Z_M Z_{1-1} Da_{1-1} - Z_M Z_1 Da_1)] \quad (31)$$

In terms of  $\eta_j Da_j$ ,

$$\eta_1 = (1 - \sum_{j=1}^n \eta_j Da_j) (1 - \nu_A \gamma_A \eta_1 Da_1) \quad (32)$$

and

$$\eta_j = (1 - \sum_{j=1}^n \eta_j Da_j) [1 + \nu_1 \gamma_1 (\eta_{1-1} Da_{1-1} - \eta_1 Da_1)] \quad (33)$$

Although the different reactants denoted by  $M_j$  are added to each step in this type of reaction, the results are obtained by the identical method to the previous development. Thus  $Z_{Mj}$ , which is  $C_{MS}/C_{Mj}$ , is written as

$$Z_{Mj} = 1 - \eta_j Da_j, \quad (34)$$

where  $Da_j$  is defined as

$$Da_j = \frac{k_j C_1}{(k_{g,a})_M}$$

But the eqs. (26)-(28) can be used without modification

in the forms on the definition (34) and the following definitions.

$$\nu_1 = \frac{(k_{g,a})_M}{(k_{g,a})_1} \text{ and } \gamma_1 = \frac{C_M}{C_1}$$

Also, since  $\eta_j Da_j = R_j / (k_{g,a})_M C_M$ ,  $\eta_j$ s are written as the followings. That is,

$$\eta_1 = (1 - \eta_1 Da_1) (1 - \nu_A \gamma_A \eta_1 Da_1) \quad (35)$$

$$\eta_j = (1 - \eta_j Da_j) [1 + \nu_1 \gamma_1 (\eta_{1-1} Da_{1-1} - \eta_1 Da_1)] \quad (36)$$

### Point Yields

By the definition,  $Y_{IS}$  is written in terms of  $Z_i$ ,  $Da_j$  or  $\eta_j Da_j$  as the followings. That is,

$$Y_{IS} = K_{j-1} \left( \frac{Z_{1-1}}{Z_A} \right) \frac{\gamma_A}{\gamma_{1-1}} - K_j \left( \frac{Z_1}{Z_A} \right) \frac{\gamma_A}{\gamma_1} \quad (37)$$

$$Y_{IS} = \frac{Z_{1-1} Da_{1-1} - Z_1 Da_1}{Z_A Da_1} \quad (38)$$

Or

$$Y_{IS} = \frac{\eta_{1-1} Da_{1-1} - \eta_1 Da_1}{\eta_1 Da_1} \quad (39)$$

Since  $Y_1$  is written as

$$Y_1 = K_{j-1} \frac{\gamma_A}{\gamma_{1-1}} - K_j \frac{\gamma_A}{\gamma_1} \quad (40)$$

the comparison can be made between  $Y_{IS}$  and  $Y_1$ .

## DETERMINATION OF VARIABLES

The following algorithm is available in determining the effectiveness factors, the surface concentrations and the rate constants from the experimental data.

(1) Determine  $\eta_j Da_j$ s from  $R_j$ s,  $(k_{g,a})_j$ s and  $C_j$ s and  $C_M$ . Here  $a_j R_j$  is the slope of the curve in the plots of  $C_j$  vs. time, and  $(k_{g,a})_1$  is obtained from the mass-transfer data.

(2) Determine  $\eta_j$  and  $Z_1$  from the equations derived or the graphs as shown in Figs. (1)-(16). In case of simple consecutive reactions,  $\eta_j$  and  $Z_1$  are calculated directly from the eqs. (9)-(11) at the same time. In case of additive consecutive reactions,  $Z_1$  is obtained from the eqs. (26)-(29), and  $\eta_j$  from the eqs. (32) or (33), or from the graphs.

(3) Once  $\eta_j$  is known,  $Da_j$  is calculated from the division of  $\eta_j Da_j$  by  $\eta_j$ , and then  $k_j$  from the definition for  $Da_j$  because  $(k_{g,a})_1$  was already known from the mass-transfer data.

(4)  $Y_{IS}$ s are easily calculated from one of the eqs. (13)-(15) for simple consecutive reactions and the eqs. (37)-(39) for additive consecutive reactions because  $K_j$ s are determined by the definition.

Further calculations can be done for the comparison of  $Y_{IS}$  with  $Y_1$ . Meanwhile, the surface concentration  $C_{IS}$

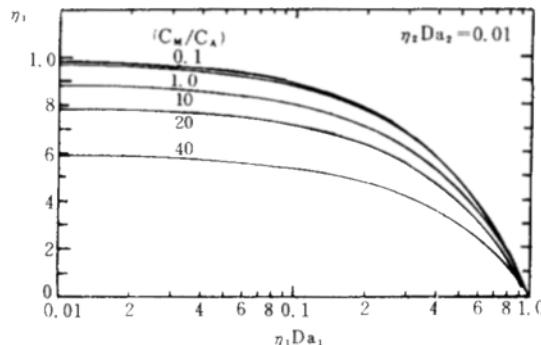


Fig. 1. The effects of  $C_M/C_A$  to  $\eta_1$  in consecutive reactions,  $A + M \xrightarrow{k_1} B + M \xrightarrow{k_2} P$ , at constant  $\eta_2 Da_2 \cdot (\eta_2 Da_2 = 0.01)$ .

is determined by the multiplication of  $Z_1$  by the bulk concentration of  $I$ .

## RESULTS AND DISCUSSION

From the equations obtained by the mass balances, the effectiveness factors, the surface concentrations and the dependency of the Damkoehler numbers upon reaction time were discussed. The emphases were given especially on the effectiveness factors for the intermediate steps and on the surface concentrations of the intermediates because they vary greatly with the variations of the measurables.

### The First Steps

In general, for single-path reactions on non-porous catalyst, affected by external mass transfer through isothermal process, the effectiveness factors are expected to be less than unity. Also the surface concentrations of the reactants are usually thinner than the bulk

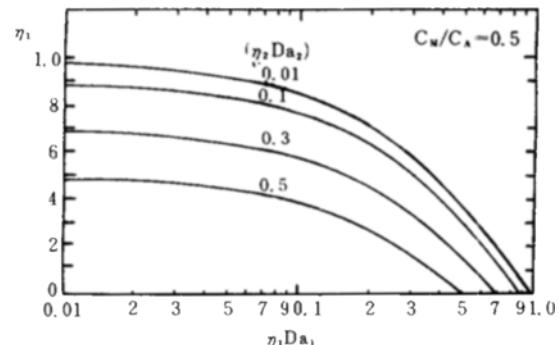


Fig. 3. The effects of  $C_M/C_A$  to  $\eta_1$  in consecutive reactions,  $A + M \xrightarrow{k_1} B + M \xrightarrow{k_2} P$ , at constant  $\eta_2 Da_2 \cdot (\eta_2 Da_2 = 0.5)$ .

ones, but those of the products are reverse to those of the reactants. These concepts are applied to the first steps in consecutive reactions as well.

In simple consecutive reactions,  $\eta_1$  is linearly dependent upon  $\eta_1 Da_1$ , decreasing with the increase of  $\eta_1 Da_1$ . The reason is due to diffusional resistance. Also  $Z_A$  has the same trend as  $\eta_1$ . These are supported by the eq. (9). Meanwhile,  $Z_P$  is linearly dependent upon  $\eta_n Da_n$ , increasing with the increase of  $\eta_n Da_n$ . The reason is that the escaping of the product from the surface to the bulk is retarded by the film resistance. It is supported by the eq. (11). In fact, the above mentioned are phenomenologically natural.

In additive consecutive reactions,  $Z_A$  and  $Z_M$  are less than the unity. According to the eq. (27),  $Z_A$  is explained similarly to that in simple consecutive reactions. Then, according to the eq. (26),  $Z_M$  is the unity minus the summation of all the  $\eta_j Da_j$ , and thus presumed to be very small compared with  $Z_A$  in the magnitudes. As for  $Z_P$ , similar interpretation to that in simple consecutive reac-

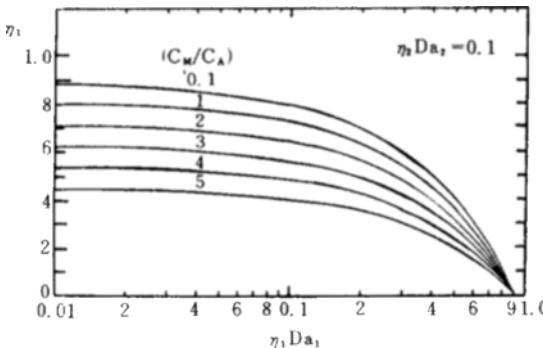


Fig. 2. The effects of  $C_M/C_A$  to  $\eta_1$  in consecutive reactions,  $A + M \xrightarrow{k_1} B + M \xrightarrow{k_2} P$ , at constant  $\eta_2 Da_2 \cdot (\eta_2 Da_2 = 0.1)$ .

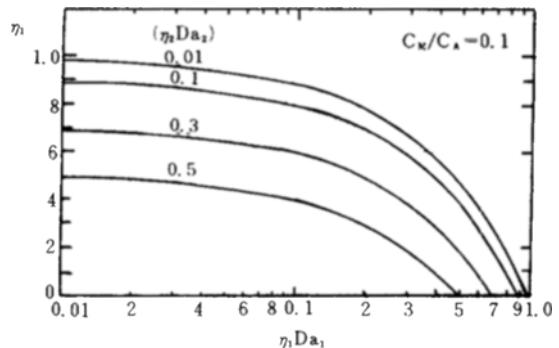


Fig. 4. The effects of  $\eta_2 Da_2$  to  $\eta_1$  in consecutive reactions,  $A + M \xrightarrow{k_1} B + M \xrightarrow{k_2} P$ , at constant  $C_M/C_A \cdot (C_M/C_A = 0.1)$ .

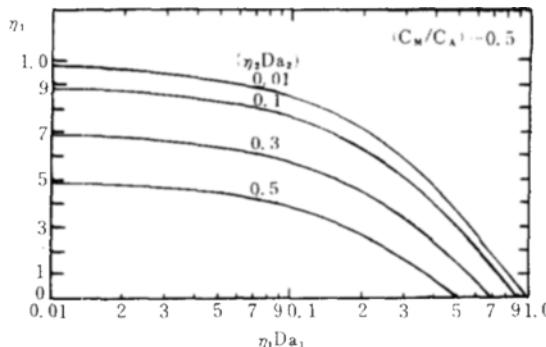


Fig. 5. The effects of  $\eta_2 Da_2$  to  $\eta_1$  in consecutive reactions,  $A + M \xrightarrow{k_1} B + M \xrightarrow{k_2} P$ , at constant  $C_M/C_A \cdot (C_M/C_A = 0.5)$ .

tions can be made by the eq. (29). The  $\eta_1$  is always less than the unity as before by the eq. (32), but greatly affected by the measurables. From the relation that  $\eta_1 = Z_A Z_M$ , the molecularity of the reaction is assumed to be apparently significantly involved in the first step unlike the case of simple consecutive reactions because the additive reaction of single path in this study is bimolecular. But, from the view point that M is added to each step, and resultantly  $Z_M$  is extremely small, the significance of the molecularity is reduced rather than that in single-path addition. In fact,  $Z_A$  and  $Z_M$  are greatly affected by the bulk concentrations themselves, the mass-transfer coefficients and  $\eta_1 Da_2$ s. The eqs. (26) and (27) support these.

#### Intermediate Steps & Intermediates of Simple Consecutive Reactions

In simple consecutive reactions, from the eq. (10),  $Z_1$  and  $\eta_1$  are dependent upon  $\nu_1$  and  $\gamma_1$  as well as  $\eta_1 Da_1$ . If  $(k_g a)_S$  are assumed not to be considerably different in their magnitudes,  $\nu_1$  can be set approximately to the uni-

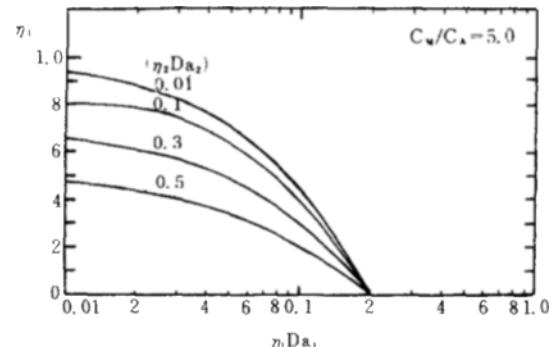


Fig. 7. The effects of  $\eta_2 Da_2$  to  $\eta_1$  in consecutive reactions,  $A + M \xrightarrow{k_1} B + M \xrightarrow{k_2} P$ , at constant  $C_M/C_A \cdot (C_M/C_A = 5)$ .

ty. Then  $Z_1$  and  $\eta_1$  are expected to be mainly affected by  $\gamma_1$  and  $\eta_1 Da_1$ . The above assumption is rationalized by the fact that the diffusion rate of gas is inversely proportional to the square root of the molecular weight (in case that the molecular weight of A doubles that of B,  $\nu_B$  becomes 0.71). Of course, the precise estimations of  $Z_1$  and  $\eta_1$  must be carried out on the consideration of  $\nu_1$ .

The comparison of the eq. (10) with the eq. (9) enables us to regard the term  $\phi_1 (= \phi_1 = \nu_1 \gamma_1 \eta_1 \nu_1 Da_1)$  as an enhancement for the increase of  $\eta_1$  or  $Z_1$  because two equations are identical in the form if this term is eliminated from the eq. (10). Here  $\phi_1$  is for an intermediate, and  $\phi_1$  for the effectiveness factor. This enhancement is presumed to be due to temporary abundance within the film of the intermediate to the next step. This abundance is also presumed to be resulted

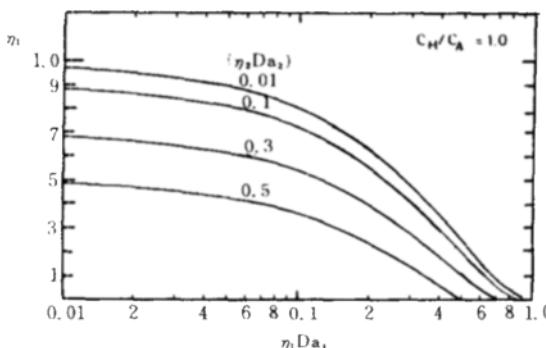


Fig. 6. The effects of  $\eta_2 Da_2$  to  $\eta_1$  in consecutive reactions,  $A + M \xrightarrow{k_1} B + M \xrightarrow{k_2} P$ , at constant  $C_M/C_A \cdot (C_M/C_A = 1.0)$ .

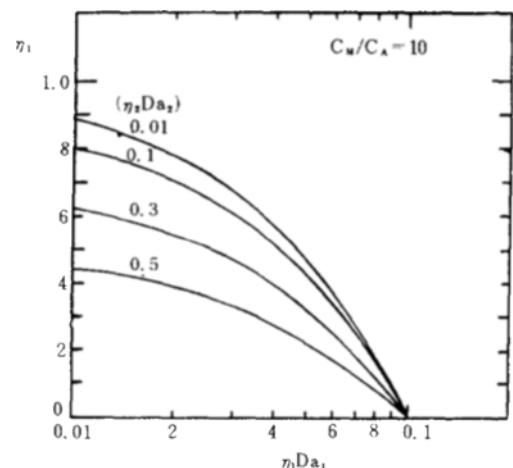


Fig. 8. The effects of  $\eta_2 Da_2$  to  $\eta_1$  in consecutive reactions,  $A + M \xrightarrow{k_1} B + M \xrightarrow{k_2} P$ , at constant  $C_M/C_A \cdot (C_M/C_A = 10)$ .

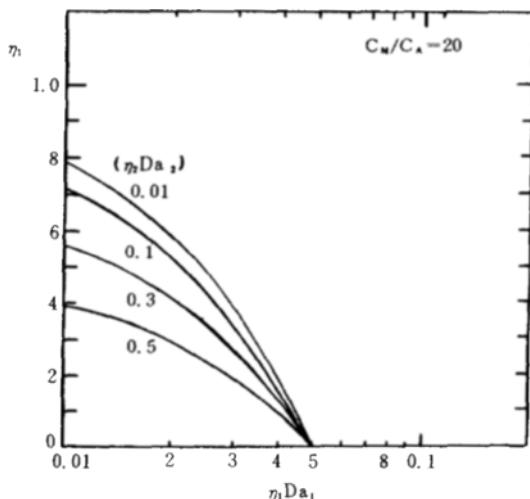


Fig. 9. The effects of  $\eta_2 Da_2$  to  $\eta_1$  in consecutive reactions,  $A + M \xrightarrow{k_1} B + M \xrightarrow{k_2} P$ , at constant  $C_M/C_A \cdot (C_M/C_A = 20)$ .

from the retardation of the diffusing of the intermediates produced from the earlier steps from the surface to the bulk.

If  $\gamma_1$  is small, the influence of  $\gamma_1$  to  $\phi_1$  or  $\phi_j$  and resultantly to  $Z_1$  or  $\eta_j$  is not significant. But, instead, if  $\gamma_1$  is large, the contribution of  $\gamma_1$  to  $Z_1$  or  $\eta_j$  is expected to be considerable. Thus there may be the case that  $Z_1$  or  $\eta_j$  exceed the unity even if consecutive reactions occur under isothermal condition. In fact, the former case is frequently encountered when exothermic reactions occur under non-isothermal condition. From this point of view, the effect of  $\gamma_1$  to  $Z_1$  or  $\eta_j$  is regarded to be important. But the effect of  $\eta_1 Da_1$  is not great because  $\eta_1 Da_1 < 1$ .

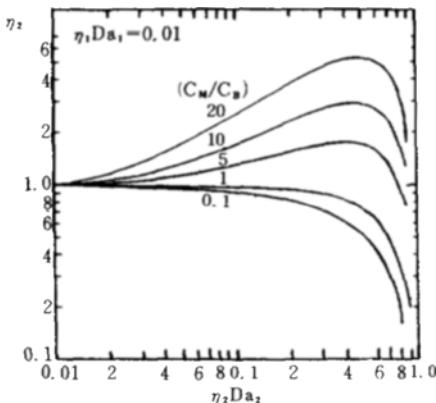


Fig. 10. The effects of  $C_M/C_B$  to  $\eta_2$  in consecutive reactions,  $A + M \xrightarrow{k_1} B + M \xrightarrow{k_2} P$ , at constant  $\eta_1 Da_1 \cdot (\eta_1 Da_1 = 0.01)$ .

### Intermediate Steps & Intermediates of Additive Consecutive Reactions

From the comparison of the eq. (28) with the eq. (27),  $\phi_1$  becomes  $\nu_1 \gamma_1 \eta_{j-1} Da_{j-1}$ , identical to that in simple consecutive reactions. Therefore, as for  $\phi_1$ , similar explanation to that of simple consecutive reactions can be made. But, as for  $\phi_j$  or  $\eta_j$ , careful considerations are required rather than in simple consecutive reactions. From the comparison of the eq. (33) with the eq. (32),  $\phi_j$  becomes

$$\phi_j = \nu_1 \gamma_1 \eta_{j-1} Da_{j-1} \left( 1 - \sum_{i=A}^N \eta_i Da_i \right) \quad (41)$$

According to the eq. (28),  $Z_1$  is greater than the unity if  $\eta_{j-1} Da_{j-1} > \eta_1 Da_1$ , but less than the unity in case of the reverse. On the other hand,  $\eta_j$  can be less than the unity, even if  $Z_1 > 1$ . Because  $\eta_j = Z_j Z_M$ , where  $Z_M < 1$ , the multiplication of  $Z_j$  by  $Z_M$  can be less than the unity. But, on the assumption that  $\nu_1$  can be set approximately to the unity as before, if  $\gamma_1$  has the large value,  $Z_1$  can become far greater than the unity, and its magnitude depends upon the value of  $\gamma_1$ .

In this study, two-step reactions were taken as an example in order to investigate the influence of  $\gamma_1$  and  $\eta_1 Da_1$  to  $\eta_j$ . Here  $\nu_B$  was taken as the unity. the results were plotted from the Figs. (1) to (16). Then the plots of  $\eta_2$  vs.  $\eta_2 Da_2$  with the variation of  $\eta_1 Da_1$  where  $\gamma_B = 1$  were omitted because  $\eta_2$  becomes simply

$$\eta_2 = (1 - \eta_2 Da_2)^{-1} - (\eta_1 Da_1)^{-1} \quad (42)$$

from the eq. (33). These graphs can be used for the determination of  $\eta_j$ 's from the experimental data, but, if the slopes of the curves are steep, the use of the equations derived before is recommended rather than the graphs.

As shown in the Figs. (1)-(3) and (10)-(12), the in-

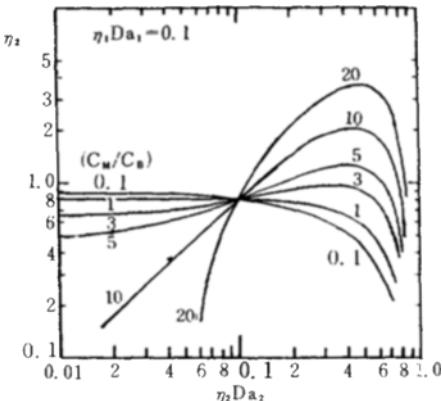


Fig. 11. The effects of  $C_M/C_B$  to  $\eta_2$  in consecutive reactions,  $A + M \xrightarrow{k_1} B + M \xrightarrow{k_2} P$ , at constant  $\eta_1 Da_1 \cdot (\eta_1 Da_1 = 0.1)$ .

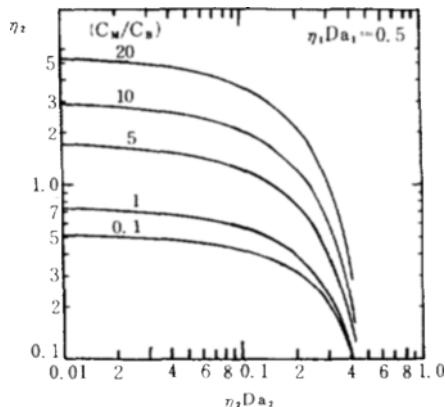


Fig. 12. The effects of  $C_M/C_B$  to  $\eta_2$  in consecutive reactions,  $A + M \xrightarrow{k_1} B + M \xrightarrow{k_2} P$ , at constant  $\eta_1 Da_1 \cdot (\eta_1 Da_1 = 0.5)$ .

fluences of  $\gamma_A$ s to  $\eta_2$ s, when investigated at the condition that another  $\eta_1 Da_1$  was fixed as a constant, are greater at the large value of  $\eta_2 Da_2$  than at the small value of  $\eta_2 Da_2$ . According to the Figs. (1)-(3), at constant  $\eta_1 Da_1$ ,  $\eta_1$  decreases with the increase of  $\gamma_A$ . Then, in the Fig. (11) plotted for  $\eta_1 Da_1$  fixed as 0.1,  $\eta_2$  decreases with the increase of  $\gamma_B$  where  $\eta_1 Da_1 > \eta_2 Da_2$ , but increases where  $\eta_1 Da_1 < \eta_2 Da_2$ . In the Fig. (10), the above tendency was not shown explicitly because the curves were cut where  $\eta_2 Da_2 < 0.01$ , and also, in the Fig. (12), only the increasing tendency of  $\eta_2$  with the increase of  $\gamma_B$  was shown. But, if plotted over the whole range of  $\eta_2 Da_2$ , the Fig. (10) will show the same fashion as the Fig. (11).

According to the Fig. (4-9) and (13-16), the influence of  $\eta_2 Da_2$  to  $\eta_1$  at fixed  $\gamma_A$  is not severer than those of  $\eta_1 Da_1$  to  $\eta_2$  at fixed  $\gamma_B$ . The influence of  $\eta_1 Da_1$  to  $\eta_2$  is

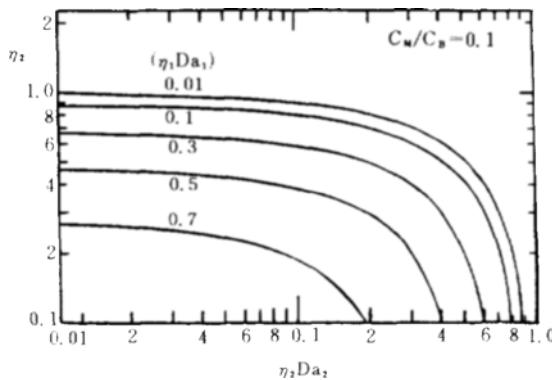


Fig. 13. The effects of  $\eta_1 Da_1$  to  $\eta_2$  in consecutive reactions,  $A + M \xrightarrow{k_1} B + M \xrightarrow{k_2} P$ , at constant  $C_M/C_B \cdot (C_M/C_B = 0.1)$ .

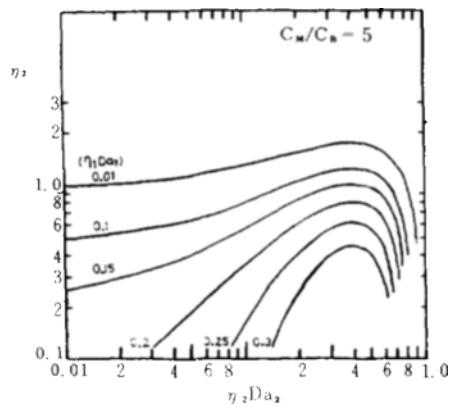


Fig. 14. The effects of  $\eta_1 Da_1$  to  $\eta_2$  in consecutive reactions,  $A + M \xrightarrow{k_1} B + M \xrightarrow{k_2} P$ , at constant  $C_M/C_B \cdot (C_M/C_B = 5)$ .

great especially at the large value of  $\gamma_B$ .

Therefore the conspicuous effects of  $\gamma_A$ s to  $\eta_2$ s are obvious from the figures plotted for two-step reactions.

#### Dependency of Da upon Reaction Time

For a single first-order reaction, Da is constant regardless of reaction time or the bulk concentration of the reactant if the variation of the concentration during the reaction does not affect the mass-transfer coefficient. Da<sub>s</sub> for simple consecutive reactions are also independent of reaction time or the concentrations of the species because the Da<sub>s</sub> are expressed by the same from as that for the first-order reaction.

But Da<sub>s</sub> vary with reaction time or the concentrations in case of multi-component reactions or the reac-

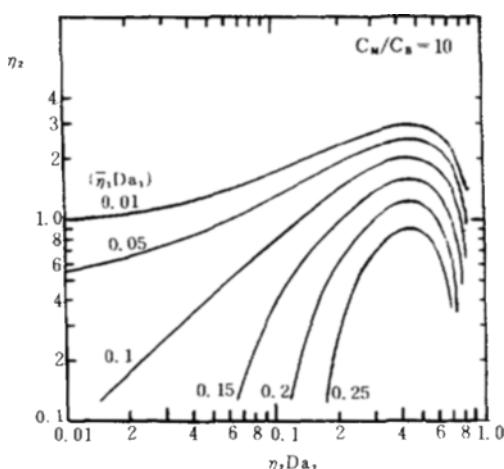


Fig. 15. The effects of  $\eta_1 Da_1$  to  $\eta_2$  in consecutive reactions,  $A + M \xrightarrow{k_1} B + M \xrightarrow{k_2} P$ , at constant  $C_M/C_B \cdot (C_M/C_B = 10)$ .

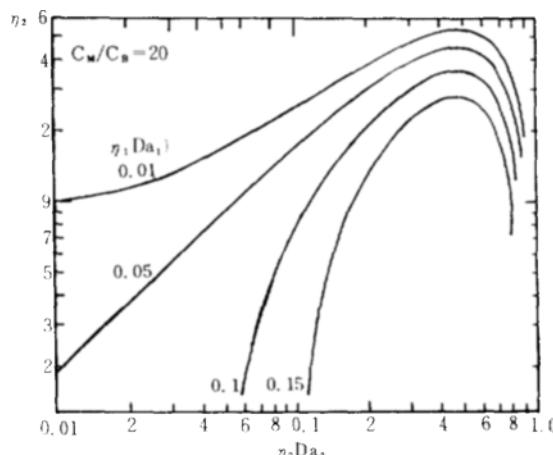


Fig. 16. The effects of  $\eta_1 Da_1$  to  $\eta_2$  in consecutive reactions,  $A + M \rightarrow B + M \rightarrow P$ , at constant  $k_1$ ,  $k_2$ ,  $C_M/C_B \cdot (C_M/C_B = 20)$ .

tions of non-linear kinetics. In additive consecutive reactions under consideration,  $Da_1$  decreases as the reactions proceed. Then  $Da_2$ s for the intermediate steps vary with reaction time depending upon the magnitudes of  $k_2$ s.

In general, the dependency of  $Da$  upon reaction time is expected to be conspicuous in the batch reactors or PFRs, but to be nil in CSTRs after the reactions reach steady state throughout the reactors.

#### Effect of Diffusivity and Reynolds Number

In general, the mass-transfer coefficient is measured by the Sherwood number or the Stanton number correlated by

$$St = \frac{Sh}{ReSc}$$

As for forced convection around a sphere, generalized relation is

$$Sh(\propto \frac{k_g}{D}) = 2.0 + f(Re, Sc) \quad (43)$$

where the first term 2.0 is for only molecular diffusion in case of no fluid motion, and the last term for convective diffusion. If hydraulic boundary layer thickness is approximately equal to concentration boundary layer thickness,  $Sc \approx 1$ . In this case,  $Sh$  or  $K_g$  is the function of  $Re$  only. Even in case that  $Sc$  is not too large, the same statement can be made. Therefore, at low  $Re$ , the dependence of the mass-transfer coefficient upon  $Re$  is negligible. In this case, the resistance by mass transfer is presumed to be considerable. In the extreme case that  $Re = 0$  (no fluid motion),  $Sh = 2.0$ , and thus the mass-transfer coefficient is directly proportional to the diffusivity.

At high  $Re$ ,  $Sh$  is dependent mainly upon  $Re$  because

the effect of molecular diffusion is neglected and convective diffusion increases the mass-transfer rate by increasing the concentration gradient within the film. Therefore, in this case, the resistance by mass transfer is presumed to be greatly reduced.

#### CONCLUSIONS

From this study of consecutive reactions affected by isothermal interphase diffusion, the following conclusions are made.

The surface concentration of the reactant is always thinner than the bulk one, but that of the final product thicker than the bulk one. Then  $Z_1$  for the intermediate is increased by the enhancements  $\phi_1$ , and  $\phi_1$  is affected especially by the concentrations.

$\eta_1$  is linearly dependent upon  $\eta_1 Da_1$ , decreasing with the increase of  $\eta_1 Da_1$  in simple consecutive reactions, but greatly affected by the measurables in additive consecutive reactions. Also  $\eta_j$  for the intermediate steps is increased by the enhancement  $\phi_j$ , and  $\phi_j$  is affected especially by the concentrations, too.

The  $Da_j$  is invariant with reaction time in simple consecutive reactions, but variant in additive consecutive reactions.

The diffusional resistance is affected greatly by the diffusivity at low  $Re$ , but by  $Re$  itself at high  $Re$ .

#### NOMENCLATURE

|             |                                                                                     |
|-------------|-------------------------------------------------------------------------------------|
| A,B,I,M,N,P | : species                                                                           |
| a           | : effective interfacial area for mass transfer                                      |
| C           | : concentration                                                                     |
| D           | : Diffusivity                                                                       |
| Da          | : Damkoehler number                                                                 |
| K           | : ratio of the rate constant to that for the first step                             |
| k           | : rate constant                                                                     |
| $k_g$       | : mass transfer coefficient                                                         |
| R           | : reaction rate                                                                     |
| Re          | : Reynolds number                                                                   |
| Sc          | : Schmidt number                                                                    |
| Sh          | : Sherwood number                                                                   |
| St          | : Stanton number                                                                    |
| Y           | : Point yield                                                                       |
| Z           | : ratio of surface concentration to bulk concentration.                             |
| $\gamma$    | : ratio defined by $C_{I-1}/C_I$ , $C_M/C_I$ or $C_{M_I}/C_I$ for species I         |
| $\eta$      | : interphase effectiveness factor                                                   |
| $\nu$       | : ratio defined by $(k_g a)_{I-1}/(k_g a)_I$ or $(k_g a)_M/(k_g a)_I$ for species I |
| $\phi$      | : enhancement for Z or $\eta$                                                       |

**Subscripts**

A,B,I,M,N,P : for species A,B,I,M,N,P  
j,n : for the j-th or n-th step  
S : for surface condition

**REFERENCES**

1. Carberry, J.J.: "Chemical and Catalytic Reaction Engineering", McGraw-Hill Book Co. New York, NY (1976).
2. Carberry, J.J.: *Ind. Eng. Chem. Fundamentals*, **14**(2), 129 (1975).
3. Carberry, J.J.: *Catal. Rev.*, **3**, 69 (1970).
4. Carberry, J.J.: *Ind. Eng. Chem.*, **58**(10), 40 (1966).
5. Levenspiel, O.: "Chemical Reaction Engineering", John Wiley and Sons Inc., New York, NY (1972).
6. Loeffler, D.G. and Schmidt, L.D.: *AIChE J.*, **21**(4), 786 (1975).
7. Satterfield, C.N.: "Mass Transfer in Heterogeneous Catalyst", MIT Press, Cambridge, Mass. (1970).
8. Pignet, T. and Schmidt, L.D.: *Chem. Eng. Sci.*, **29**, 1123 (1974).
9. Nowak, E.J.: *Chem. Eng. Sci.*, **21**, 19 (1966).
10. Carberry, J.J. and White, D.: *Ind. Eng. Chem.*, **61**(7), 27 (1969).
11. Moffat, A.J., Clark, A. and Johnson, M.M.: *J. Catal.*, **22**, 379 (1971).